The impact of surface and retardation losses on valence electron energy-loss spectroscopy.

نویسندگان

  • Rolf Erni
  • Nigel D Browning
چکیده

The inelastic scattering of fast electrons transmitting thin foils of silicon (Si), silicon nitride (Si(3)N(4)), gallium arsenide (GaAs), gallium nitride (GaN) and cadmium selenide (CdSe) was analyzed using dielectric theory. In particular, the impact of surface and bulk retardation losses on valence electron energy-loss spectroscopy (VEELS) was studied as a function of the foil thickness. It is shown that for the materials analyzed, surface and retardation losses can cause a systematic, thickness-dependent modulation of the dielectric volume losses, which can hamper the determination of the bulk dielectric data as well as the identification of band-gap and interband transition energies by VEELS. For Si and GaAs, where the dielectric function is strongly peaked with high absolute values, retardation losses lead to additional intensity maxima in the spectrum. For thin films of these materials (below approximately 100 nm), the additional intensity maxima are related to retardation effects due to the finite size of the sample leading to the excitation of guided light modes. For thicker films, exceeding about 200 nm, the intensity maxima are caused by bulk retardation losses, i.e., Cerenkov losses. Although thickness-dependent modulations were observed for Si(3)N(4), GaN and CdSe, the form of the dielectric functions and their lower maxima, means that for TEM samples < 100 nm thick, the band-gap energies of these materials can be accurately identified by VEELS. Guidelines are given that allow for forecasting the impact of surface and retardation losses on VEELS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Valence excitations in individual single-wall carbon nanotubes

We report on measurements of the plasmon losses of individual single-wall carbon nanotubes by electron energy-loss spectroscopy in a high-resolution transmission electron microscope. The experimental data are compared to simulated excitation probabilities calculated using the hydrodynamic theory of the interaction between a probe electron and a two-dimensional quasifree electron gas confined on...

متن کامل

In-Situ Analysis of Valence Conversion in Transition Metal Oxides Using Electron Energy-Loss Spectroscopy

Transition metal oxides are a class of materials that are vitally important for developing new materials with functionality and smartness. The unique properties of these materials are related to the presence of elements with mixed valences. The measurement of cation valence states can be performed using X-ray photoelectron spectroscopy and other chemical techniques, but these techniques are sui...

متن کامل

Quantitative analysis of valence electron energy-loss spectra of aluminium nitride.

The optical properties and electronic structure of aluminium nitride are determined using valence electron energy-loss spectroscopy in a dedicated scanning transmission electron microscope. Quantitative analysis of the experimental valence electron energy-loss spectra to determine the electronic structure encompasses single scattering deconvolution of the valence electron energy-loss spectra to...

متن کامل

Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy

Valence electron energy loss spectroscopy (VEELS) was applied to determine band transitions in wurtzite InN, deposited by molecular beam epitaxy on (0001) sapphire substrates or GaN buffer layers. The GaN buffer layer was used as VEELS reference. At room temperature a band transition for wurtzite InN was found at (1.7G0.2 eV) and for wurtzite GaN at (3.3G 0.2 eV) that are ascribed to the fundam...

متن کامل

Vibrational and valence aloof beam EELS: A potential tool for nondestructive characterization of nanoparticle surfaces.

In many materials systems, electron beam effects may substantially alter and destroy the structure of interest during observation. This is often true for the surface structures of catalytic nanoparticles where the functionality is associated with thin surface layers which are easily destroyed. The potential application of using aloof beam electron energy-loss spectroscopy as a non-destructive n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ultramicroscopy

دوره 108 2  شماره 

صفحات  -

تاریخ انتشار 2008